Biofunctionality: Based on Science

What Nature Inspires, Geistlich Engineers.

Intentional design and the preservation of biologically natural structures are key elements in the development of Geistlich Biomaterials and the accompanying dental applications. Through unique, proprietary technology used during manufacturing, nature’s complex tissues are carefully processed to preserve biologic cues that enable optimal tissue integration.1,2

Biologically Natural Structures – 
Ideal Architecture.

The crystalline structure of Geistlich Bio-Oss® and the Type I & III bi-layer collagen structures of Geistlich Bio-Gide® and Geistlich Mucograft® retain natural forms, allowing the body to accept these biomaterials as native. The surface of Geistlich Bio-Oss® supports the adsorption of proteins that enables adhesion of bone-forming cells.3-5 Using specific surface receptors, cells bind directly to Geistlich collagens. Geistlich Mucograft® is designed to provide a requisite, reinforcing matrix and a signaling source for regenerative wound healing. Fibroblasts respond to the collagen by attaching, orienting, and producing new collagen integration. Collagen research suggests that in such scaffolds, endothelial progenitor cells are activated for angiogenesis, and the intact collagen fibrils serve as conduits for endothelial cells and the formation of vascular channels of nutrition. These vascular channels are surrounded with perivascular mesenchymal stem cells with anti-inflammatory properties.6-9 Due to these properties, the clinical result observed with Geistlich Mucograft® is optimal soft tissue regeneration rather than soft tissue repair. 10-13

Nature’s Capacity for Healing.

The human body possesses the capacity for regenerative wound healing. The natural structures of Geistlich Bio-Oss®, Geistlich Bio-Gide®, and Geistlich Mucograft® enhance the biologic cascade of healing events by attracting and delivering essential serum proteins. The result is complete tissue integration that encourages regenerative healing.

The excellent results of Guided Bone Regeneration with Geistlich Bio-Oss® and Geistlich Bio-Gide® are largely due to their unsurpassed biofunctionality.
Optimal protection for bone regeneration – Geistlich Bio-Gide® is a unique bi-layer collagen membrane comprising a smooth and a rough, open-pored layer. Ideal environment for new bone formation14 – Geistlich Bio-Oss® consists of a unique inter-connecting pore system. The micro-pores ensure an efficient fluid intake. The macro-pores permit the migration of cells.
Uneventful wound healing15 – The smooth layer facing the soft-tissue, favors the grown of fibroblasts[1] as the barrier function prevents the ingrowth of soft-tissue into the newly forming bone beneath. Prompt and homogenous vascularization1 – Geistlich Bio-Gide® permits prompt and homogenous vascularization and so brings about optimum tissue integration and wound stabilization.
Optimum bone healing16 – The rough layer facing the bone functions as a 3-dimensional scaffold for osteoblasts[2]. Optimal space for vascularization and bone formation17,18 – The pore system and surface morphology of Geistlich Bio-Oss® encourages the growth of osteoblasts. The porous structure serves as a scaffold for in-growing blood vessels and bone growth.
Optimal barrier time – Geistlich Bio-Gide® provides an optimum barrier that integrates with surrounding tissues to protect the initial coagulum and then optimally degrades. This allows the natural complex structure of the soft tissue, with all of the intrinsic components, such as the periosteum, to form.
The slow resorption of Geistlich Bio-Oss® and the ideally matched protective function of Geistlich Bio-Gide® promote the long-term volume stability19 of the augmentation material and ensure high implant survival rates.20
REFERENCES
  1. Rothamel D, et al., Clin Oral Implants Res. 2005; 16(3): 369-78
  2. Schwarz F, et al., Clin. Oral Implants Res. 2006; 17: 403-409
  3. Taguchi Y, et al., Biomaterials. 2005 Nov;26(31):6158-66
  4. Galindo-Moreno P, et al., Clin Oral Implants Res. 2014 Mar; 25(3):366-71. doi: 10.1111/clr. 12112 Epub 2013 Jan 28
  5. Araújo MG, et al., Clin Oral Implants Res. 2010 Jan; 21(1):55-64
  6. Nien Y, et al., Wound Repair and Regeneration. 2003; 11(5), 380-385
  7. Tran KT, et al., Wound Repair and Regeneration, 2004; 12(3), 262-268
  8. Davis GE, et al., Biochemical and Biophysical Research Communications. 1992 182(3), 1025-1031
  9. Tran KT, et al., Journal of Dermatological Science. 2005; 40(1), 11-20
  10. Badylak S, et al., 2009. Acta Biomaterialia, 5(1), 1-13
  11. Ghanaati S, et al. Biomed Mater. 2011 Feb; 6(1): 015010
  12. Rocchietta I, et al., Int J Periodontics Restorative Dent. 2012 Feb; 32(1):e34-40
  13. Nevins M, et al. Int J Periodontics Restorative Dent. 2011 Jul-Aug; 31(4):367-73
  14. Berglundh T, Lindhe J, Clin Oral Implants Res 1997; 8(2): 117–124.
  15. Becker J et al., Clin. Oral Implants Res. 2009; 20(7): 742–93
  16. Schwarz F et al., Clin Oral Implants Res. 2014 Sep;25(9):1010–5
  17. Weibrich G et al., Mund Kiefer Gesichtschirurg 4, 2000; 148–152
  18. Degidi M et al., Oral Dis. 2006 Sep; 12(5): 469–475
  19. Mordenfeld A et al., Clin Oral Implants Res. 2010 Sep;21(9):961–70
  20. Jung R et al., Clin Oral Implants Res. 2013 Oct;24(10):1065–73
CAUTION

Federal law restricts these devices to sale by or on the order of a dentist or physician.

PLACE ORDER NOW

Call us at 1 800 363 2876 to book the order or click the button to buy now on iSHOP